In this lecture we focus on the important computational aspect of convexity. We will see that:
Our focus here is on convex (possibly constrained) optimization, that is:
<aside> <img src="/icons/looped-square_orange.svg" alt="/icons/looped-square_orange.svg" width="40px" />
Convex optimization, generic form:
$$ \begin{align*} \min ~& f(x) \\ \text{s.t.} ~~& x \in S \end{align*} $$
where both $f$ and $S$ are convex
</aside>
A canonical, general form for convex problems is using functional (convex) constraints:
<aside> <img src="/icons/looped-square_orange.svg" alt="/icons/looped-square_orange.svg" width="40px" />
Convex optimization, functional constraints form:
$$ \begin{align*} \min ~& f(x) \\ \text{s.t.} ~~& f_i(x) \leq 0 \quad \forall ~ i \in [m] \end{align*} $$
where $f,f_1,\ldots,f_m$ are all convex
</aside>