Recap and context

Recap: Online Mirror Descent (OMD)

Recall the general OMD template:

<aside> ⚙ Meta-Algorithm: Online Mirror Descent (OMD)

Parameters: strictly convex regularization $R$ over $W \subseteq \R^d$, stepsize $\eta>0$

</aside>

Recall:

<aside> 💡 Definition: Bregman divergence

The Bregman divergence $D_f$ associated with a convex and differentiable $f: S \to \R$ is:

$$ \begin{align*} \forall x,y \in S:\quad D_f(y,x) = f(y)-f(x)-\nabla f(x) \cdot (y-x) \end{align*} $$

</aside>

diagram-20241104.png

Recap: Strong convexity, generalized

We will analyze OMD for regularizers $R$ that are strongly convex with respect to a norm $\|\cdot\|$ :