<aside> 💡 “Known” convex functions
Univariate functions:
Linear / Affine: $f(x) = a\cdot x + b$ for $a \in \R^d, b \in \R$ is always convex.
Quadratic: $f(x) = x^T A x + b^T x + c$ for $A \in \R^{d \times d}, b \in \R^d, c \in \R$ is convex if $A$ is PSD.
Norms: $f(x) = \|x\|$ is convex for any norm $\|\cdot\|$.
Positive-weighted sums: if $f_1,\ldots,f_n$ are convex and $\alpha_1,\ldots,\alpha_n \geq 0$ then $\sum_{i=1}^n \alpha_i f_i$ is convex.
Composition with affine: if $f : \R^n \to \R$ is convex and $A \in \R^{n \times d}, b \in \R^n$ then $g(x) = f(Ax+b)$ is also convex over $\R^d$. </aside>
<aside> 💡 Theorem: Jensen’s inequality
If $f : S\to\R$ is convex (over a convex $S$), then for all $x_1,\ldots,x_n \in S$ and $\lambda_1,\ldots,\lambda_n \geq 0$ such that $\sum_{i=1}^n \lambda_i = 1$, we have that
$$ \begin{align*} f\left(\sum_{i=1}^n \lambda_i x_i\right) \leq \sum_{i=1}^n \lambda_i f(x_i) . \end{align*} $$
</aside>