Recap

image.png

Common strategies for showing convexity of sets

Common strategies for showing convexity of functions

<aside> 💡 “Known” convex functions

Jensen’s inequality

<aside> 💡 Theorem: Jensen’s inequality

If $f : S\to\R$ is convex (over a convex $S$), then for all $x_1,\ldots,x_n \in S$ and $\lambda_1,\ldots,\lambda_n \geq 0$ such that $\sum_{i=1}^n \lambda_i = 1$, we have that

$$ \begin{align*} f\left(\sum_{i=1}^n \lambda_i x_i\right) \leq \sum_{i=1}^n \lambda_i f(x_i) . \end{align*} $$

</aside>